

ADVANCED GCE MATHEMATICS (MEI)

Differential Equations

Candidates answer on the Answer Booklet

OCR Supplied Materials:

8 page Answer Booklet

MEI Examination Formulae and Tables (MF2)

Other Materials Required:

• Scientific or graphical calculator

Monday 24 May 2010 Afternoon

4758/01

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer any three questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \,\mathrm{m \, s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 The equation of a curve in the *x*-*y* plane satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 8y = 32x^2.$$

[10]

The curve has a minimum point at the origin.

(i) Find the general solution.

- (ii) Find the equation of the curve. [4]
- (iii) Describe how the curve behaves for large negative values of x. [2]
- (iv) Write down an approximate expression for y, valid for large positive values of x. [1]
- (v) Sketch the curve. [3]
- (vi) Use the differential equation to show that any stationary point below the x-axis must be a minimum. [4]
- 2 (a) (i) Find the general solution of

$$\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = \mathrm{e}^{-2t}.$$
 [6]

(ii) Find the solution of

$$\frac{\mathrm{d}z}{\mathrm{d}t} + 2z = y$$

where y is the general solution found in part (i), subject to the conditions that z = 1 and $\frac{dz}{dt} = 0$ when t = 0. [7]

(**b**) The differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} + 2x = \sin t$$

is to be solved.

(i) Find the complementary function and a particular integral. Hence state the general solution.

[6]

- (ii) Find the solution that satisfies the condition $\frac{dx}{dt} = 0$ when t = 0. [3]
- (iii) Find approximate bounds between which x varies for large positive values of t. [2]

- **3** Water is leaking from a small hole near the base of a tank. The height of the surface of the water above the hole is *y* m at time *t* minutes.
 - (i) Consider first a cylindrical tank. The height of the water is modelled by the differential equation

 $\frac{\mathrm{d}y}{\mathrm{d}t} = -k\sqrt{y},$

where k is a positive constant. The height of water is initially 1 m and after 2 minutes it is 0.81 m.

Find y in terms of t, stating the range of values of t for which the solution is valid. Sketch the solution curve. [10]

(ii) Now consider water leaking from a conical tank. The height of the water is modelled by the differential equation

$$\pi y^2 \frac{\mathrm{d}y}{\mathrm{d}t} = -0.4\sqrt{y}.$$

Find how long it takes the height to decrease from 1 m to 0.81 m.

(iii) Now consider water leaking from a spherical tank. The height of the water is modelled by the differential equation

$$\pi(ay - y^2)\frac{\mathrm{d}y}{\mathrm{d}t} = -0.4\sqrt{y},$$

where a is the diameter of the sphere.

This equation is to be solved by Euler's method. The algorithm is given by $t_{r+1} = t_r + h$, $y_{r+1} = y_r + h\dot{y}_r$. The diameter is 2 m and initially the height is 1 m.

Use a step length of 0.1 to estimate the height after 0.2 minutes. [5]

(iv) For any tank, the velocity of the water leaving the hole is proportional to the square root of the height of the surface of the water above the hole.

By considering the rate of change of the volume of water, derive the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -k\sqrt{y}$$

[4]

[5]

for the cylindrical tank in part (i).

[Question 4 is printed overleaf.]

4 At time t, the quantities x and y are modelled by the simultaneous differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2x - 5y + 9\mathrm{e}^{-2t},$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = x - 4y + 3\mathrm{e}^{-2t}.$$

(i) Show that
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} - 3x = 3e^{-2t}$$
. [5]

(ii) Find the general solution for *x*. [8]

[4]

[4]

(iii) Find the corresponding general solution for y.

Initially x = 0 and y = 2.

- (iv) Find the particular solutions.
- (v) Describe the behaviour of the solutions as $t \to \infty$.

State, with reasons, whether this behaviour is different if the initial value of y is just less than 2, and the initial value of x is still 0. [3]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Mathematics (MEI)

Advanced GCE 4758

Differential Equations

Mark Scheme for June 2010

Mark Scheme

	2			
1(i)	$\alpha^2 + 4\alpha + 8 = 0$	M1	Auxiliary equation	
	$\alpha = -2 \pm 2j$	A1		
	$CF e^{-2x} (A\cos 2x + B\sin 2x)$	M1	CF for complex roots	
		F1	CF for their roots	
	$PI y = ax^2 + bx + c$	B1		
	$\dot{y} = 2ax + b, \ddot{y} = 2a$			
	2 + 1(2 + 1) + 2(-2 + 1 + 1) + 22 + 2	2.61	Differentiate twice and	
	$2a + 4(2ax + b) + 8(ax^{2} + bx + c) = 32x^{2}$	M1	substitute	
	8a = 32	M1	Compare coefficients	
	8a + 8b = 0			
	2a + 4b + 8c = 0	M1	Solve	
	a = 4, b = -4, c = 1	A1		
	GS $y = 4x^2 - 4x + 1 + e^{-2x} (A\cos 2x + B\sin 2x)$	F1	PI + CF with two arbitrary constants	10
(ii)	$x = 0, y = 0 \Longrightarrow A = -1$	M1	Use condition	
	$y' = 8x - 4 + e^{-2x} (-2A\sin 2x + 2B\cos 2x)$	M1	Differentiate (product rule)	
	$-2A\cos 2x - 2B\sin 2x)$	M1	Differentiate (product rule)	
	$x = 0, y' = 0 \Longrightarrow 0 = -4 + (2B - 2A) \Longrightarrow B = 1$	M1	Use condition	
	$y = 4x^2 - 4x + 1 + e^{-2x}(\sin 2x - \cos 2x)$	A1	Cao	4
(iii)	$x \rightarrow -\infty \Rightarrow y$ oscillates	B1	Oscillates	
	With (exponentially) growing amplitude	B1	Amplitude growing	2
(iv)	$y \sim (2x-1)^2$ or $4x^2 - 4x + 1$	B1		
				1
(v)	<u>^</u>	B1	Minimum point at origin	
	/∖ ↑ /	B1	Oscillates for $x < 0$ with	
		21	growing amplitude	
		B1	Approximately parabolic for $x > 0$	
	$\backslash / $		<i>x</i> >0	
				2
	dv		Set first derivative (only) to	3
(vi)	At stationary point $\frac{dy}{dx} = 0$	M1	Set first derivative (only) to zero in DE	3
(vi)	ů <i>x</i>	M1	Set first derivative (only) to zero in DE	3
(vi)	ů <i>x</i>	M1 A1	· •	3
(vi)	So $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 32x^2 - 8y$		zero in DE	3
(vi)	So $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 32x^2 - 8y$		zero in DE Deduce sign of second	3
(vi)	ů <i>x</i>	A1	zero in DE	3

$=e^{2t}$ A1 $e^{2t}\frac{dy}{dt} + 2e^{2t}y = 1$ M1* Multiply by IF $\frac{d}{dx}(e^{2t}y) = 1$ A1 $e^{2t}y = t + A$ *M1A1 Integrate both sides 6 $[y = e^{-2t}(t + A)]$ Alternative method: $CF \ y = Ee^{-2t}$ B1 $P1 \ y = Fte^{-2t}$ B1 $P1 \ y = Fte^{-2t}$ F1 P = 1M1A1 $y = e^{-2t}(t + E)$ F1 (ii) $\frac{dz}{dt} + 2z = e^{-2t}(t + A)$ $I = e^{2t}$ B1 Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ M1 Multiply by IF and integrate $e^{2t}z = \frac{1}{2}t^{2} + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^{2} + At + B)$ H1 Use condition $\frac{z}{z} - 2e^{-t}(\frac{1}{2}t^{2} + At + B) + e^{-2t}(t + A)$ M1 Differentiate (product rule) $t = 0, z = 1 \Rightarrow 1 = B$ M1 Use condition $\frac{z}{z} = e^{-2t}(\frac{1}{2}t^{2} + At + B) + e^{-2t}(t + A)$ M1 Differentiate (product rule) $t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1 Use condition $z = e^{-2t}(\frac{1}{2}t^{2} + 2t + 1)$ A1 Alternative method: $P1 \ x = (Pt + Qt^{2})e^{-2t}$ B1 Correct form of P1	=(w)(1)	$IF = \exp \int 2dt$	M1	Attempt IF	
$e^{2t} \frac{dy}{dt} + 2e^{2t}y = 1$ $M1^*$ $Multiply by IF$ $\frac{d}{dx} (e^{2t}y) = 1$ $A1$ $e^{2t}y = t + A$ $MIA1$ $Multiply by IF$ $\frac{d}{dx} (e^{2t}y) = 1$ $A1$ $e^{2t}y = t + A$ $MIA1$ $Integrate both sides$ F I $F = e^{2t}(t + A)$ $R = 1$ $F = 1$		5			
$\begin{array}{c} \begin{array}{c} & \frac{d}{dx} \left(e^{2t} y \right) = 1 \\ & e^{2t} y = t + A \\ & e^{2t} y = t + A \end{array} & \text{*M1A1} \text{Integrate both sides} \end{array} & \begin{array}{c} 6 \\ \hline \left[y = e^{-2t}(t + A) \right] \\ & \text{Alternative method:} \\ & \text{CF } y = Ee^{-2t} \\ & \text{B1} \\ & \text{PI } y = Fte^{-2t} \\ & \text{B1} \\ & \text{PI } y = Fte^{-2t} \\ & \text{B1} \\ & \text{PI } y = Fte^{-2t} \\ & \text{F1} \end{array} & \begin{array}{c} \text{M1} \\ & \text{In DE: } e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t} \\ & \text{M1} \\ & F = 1 \\ & y = e^{-2t}(t + E) \end{array} & \begin{array}{c} \text{F1} \\ \end{array} & \begin{array}{c} \text{M1} \\ & \text{I} = e^{2t} \\ & \text{I} = e^{2t} \\ & \text{I} = e^{2t} \\ \end{array} & \begin{array}{c} \text{B1} \\ & \text{Correct or follows (i)} \\ & \begin{array}{c} \frac{d}{dt}(e^{2t}z) = t + A \\ & e^{2t}z = \frac{1}{2}t^2 + At + B \\ & \text{A1} \\ & z = e^{-2t}(\frac{1}{2}t^2 + At + B) \\ & t = 0, z = 1 \Rightarrow 1 = B \\ & \text{M1} \\ & \text{Use condition} \\ & \begin{array}{c} \frac{z}{z} - 2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A) \\ & \text{M1} \\ & \text{Differentiate (product rule)} \\ & t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2 \\ & \text{M1} \\ & \text{A1} \end{array} & \begin{array}{c} 7 \\ & \text{A1} \\ & \begin{array}{c} 7 \\ & \text{A1} \\ & \end{array} \end{array}$		•			
$e^{2t}y = t + A$ $[y = e^{-2t}(t + A)]$ Alternative method: $CF \ y = Ee^{-2t}$ B1 $PI \ y = Fte^{-2t}$ B1 $PI \ y = e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$ M1 $F = 1$ $y = e^{-2t}(t + E)$ M1 $I = e^{2t}$ B1 $Correct or follows (i)$ $\frac{d}{dt}(e^{2t}z) = t + A$ M1 $Multiply \ by \ IF \ and \ integrate$ $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 $Use \ condition$ $\frac{d}{dt} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 $Differentiate \ (product \ rule)$ $t = 0, z = 1 \Rightarrow 1 = B$ M1 $Use \ condition$ $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 T Alternative method: $PI \ x = (Pt + Qt^2)e^{-2t}$ B1 $Correct \ form \ of \ PI$		$e^{zt} \frac{d}{dt} + 2e^{zt} y = 1$	MI*	Multiply by IF	
$e^{2t}y = t + A$ $[y = e^{-2t}(t + A)]$ Alternative method: $CF \ y = Ee^{-2t}$ B1 $PI \ y = Fte^{-2t}$ B1 $PI \ y = e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$ M1 $F = 1$ $y = e^{-2t}(t + E)$ M1 $I = e^{2t}$ B1 $Correct or follows (i)$ $\frac{d}{dt}(e^{2t}z) = t + A$ M1 $Multiply \ by \ IF \ and \ integrate$ $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 $Use \ condition$ $\frac{d}{dt} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 $Differentiate \ (product \ rule)$ $t = 0, z = 1 \Rightarrow 1 = B$ M1 $Use \ condition$ $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 T Alternative method: $PI \ x = (Pt + Qt^2)e^{-2t}$ B1 $Correct \ form \ of \ PI$		$\frac{\mathrm{d}}{\mathrm{d}}(\mathrm{e}^{2t}\mathrm{v}) = 1$	A1		
$\begin{bmatrix} y = e^{-2t}(t+A) \end{bmatrix}$ Alternative method: $CF \ y = Ee^{-2t}$ B1 B1 P1 $y = Fte^{-2t}$ B1 In DE: $e^{-2t}(F-2Ft) + 2Fte^{-2t} = e^{-2t}$ M1 $F = 1$ $y = e^{-2t}(F-2Ft) + 2Fte^{-2t} = e^{-2t}$ (ii) $\frac{dz}{dt} + 2z = e^{-2t}(t+A)$ $I = e^{2t}$ B1 Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ M1 Multiply by IF and integrate $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B)$ $t = 0, z = 1 \Rightarrow 1 = B$ M1 Use condition $\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t+A)$ M1 Differentiate (product rule) $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1 Use condition $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 Alternative method: P1 $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI				· · · · · · · · ·	
Alternative method: $CF \ y = Ee^{-2t}$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1			*MIAI	Integrate both sides	6
CF $y = Ee^{-2t}$ PI $y = Fte^{-2t}$ In DE: $e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$ F = 1 $y = e^{-2t}(t + E)$ (ii) $\frac{dz}{dt} + 2z = e^{-2t}(t + A)$ $I = e^{2t}$ B1 Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ $e^{2t}z = \frac{1}{2}t^2 + At + B$ $t = 0, z = 1 \Rightarrow 1 = B$ $t = 0, z = 1 \Rightarrow 1 = B$ $t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 Alternative method: PI $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI					
PI $y = Fte^{-2t}$ In DE: $e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$ F = 1 $y = e^{-2t}(t + E)$ (ii) $\frac{dz}{dt} + 2z = e^{-2t}(t + A)$ $I = e^{2t}$ B1 Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ $e^{2t}z = \frac{1}{2}t^2 + At + B$ $t = 0, z = 1 \Rightarrow 1 = B$ $t = 0, z = 1 \Rightarrow 1 = B$ $t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ A1 Use condition $z = e^{-2t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 Use condition $z = e^{-2t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 Differentiate (product rule) $t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1 Use condition $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 $\frac{7}{1}$ Alternative method: PI $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI			B1		
In DE: $e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$ F = 1 $y = e^{-2t}(t + E)$ (ii) $\frac{dz}{dt} + 2z = e^{-2t}(t + A)$ $I = e^{2t}$ $I = e^{2t} + At + B$ $I = e^{-2t}(\frac{1}{2}t^2 + At + B)$ $I = 0, z = 1 \Rightarrow 1 = B$ $I = 0, z = 1 \Rightarrow 1 = B$ $I = 0, z = 1 \Rightarrow 1 = B$ $I = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $I = 0, z = e^{-2t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ $I = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $I = 0, z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ $I = 0, z = e^{-2t}(\frac{1}{2$		-	B1		
In DE: $e^{-t}(F-2Ft)+2Fte^{-tt} = e^{-tt}$ F = 1 $y = e^{-2t}(t+E)$ (ii) $\frac{dz}{dt}+2z = e^{-2t}(t+A)$ $I = e^{2t}$ $I = e^{2t} = \frac{1}{2}t^2 + At + B$ $I = 0, z = 1 \Rightarrow 1 = B$ $I = 0, z = 1 \Rightarrow 1 = B$ $I = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $I = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow 0 \Rightarrow 0 = -2B + A \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 = -2B + A \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 = -2B + A \Rightarrow 0 \Rightarrow$		-	M1		
$\begin{array}{c} F_{1}^{1} = 1 \\ y = e^{-2t}(t + E) \end{array} \qquad F1$ (ii) $\begin{array}{c} \frac{dz}{dt} + 2z = e^{-2t}(t + A) \\ I = e^{2t} \\ dt \end{array} \qquad B1 \qquad \text{Correct or follows (i)} \\ \frac{d}{dt}(e^{2t}z) = t + A \\ e^{2t}z = \frac{1}{2}t^{2} + At + B \\ z = e^{-2t}(\frac{1}{2}t^{2} + At + B) \\ t = 0, z = 1 \Rightarrow 1 = B \\ z = -2e^{-t}(\frac{1}{2}t^{2} + At + B) + e^{-2t}(t + A) \\ t = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2 \\ z = e^{-2t}(\frac{1}{2}t^{2} + 2t + 1) \\ Alternative method: \\ PI \ x = (Pt + Qt^{2})e^{-2t} \end{array} \qquad B1 \qquad \text{Correct form of PI}$		In DE: $e^{-2t}(F - 2Ft) + 2Fte^{-2t} = e^{-2t}$			
(ii) $\frac{dz}{dt} + 2z = e^{-2t}(t + A)$ $I = e^{2t}$ B1 Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ M1 Multiply by IF and integrate $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B)$ $t = 0, z = 1 \Rightarrow 1 = B$ M1 Use condition $\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1 Differentiate (product rule) $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1 Use condition $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A1 Alternative method: PI $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI					
$I = e^{2t}$ B1Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ M1Multiply by IF and integrate $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B)$ A1 $t = 0, z = 1 \Rightarrow 1 = B$ M1Use condition $\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1Differentiate (product rule) $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1Use condition $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A17Alternative method:B1Correct form of PI		$y = e^{-2t} \left(t + E \right)$	ГІ		
$I = e^{2t}$ B1Correct or follows (i) $\frac{d}{dt}(e^{2t}z) = t + A$ M1Multiply by IF and integrate $e^{2t}z = \frac{1}{2}t^2 + At + B$ A1 $z = e^{-2t}(\frac{1}{2}t^2 + At + B)$ A1 $t = 0, z = 1 \Rightarrow 1 = B$ M1Use condition $\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ M1Differentiate (product rule) $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ M1Use condition $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A17Alternative method:B1Correct form of PI	(ii)	$\frac{\mathrm{d}z}{\mathrm{d}t} + 2z = \mathrm{e}^{-2t}(t+A)$			
$e^{2t}z = \frac{1}{2}t^{2} + At + B$ $z = e^{-2t}(\frac{1}{2}t^{2} + At + B)$ $t = 0, z = 1 \Rightarrow 1 = B$ $dt = 0, z = 1 \Rightarrow 1 = B$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt = 0, z = 0, z$		ui	B1	Correct or follows (i)	
$e^{2t}z = \frac{1}{2}t^2 + At + B$ $z = e^{-2t}(\frac{1}{2}t^2 + At + B)$ $t = 0, z = 1 \Rightarrow 1 = B$ $dt Use condition$ $\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ $dt Use condition$ $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $dt Use condition$ $z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ $dt Use condition$ T $dt Use condition$ T T T T T T		$\frac{\mathrm{d}}{\mathrm{d}}(\mathrm{e}^{2t}z) = t + A$	M1	Multiply by IF and integrate	
$z = e^{-2t} (\frac{1}{2}t^2 + At + B)$ $t = 0, z = 1 \Rightarrow 1 = B$ $d = 0, z = 1 \Rightarrow 1 = B$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $d = 0, z = 0, z = 0, z = 0$ $d = 0, z = 0, z = 0, z = 0, z = 0$ $d = 0, z = 0, z$		u <i>i</i>	A1		
$\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$ $t = 0, \dot{z} = 0 \Rightarrow 0 = -2B + A \Rightarrow A = 2$ $x = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ Alternative method: $PI \ x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI		2			
$t = 0, \dot{z} = 0 \Longrightarrow 0 = -2B + A \Longrightarrow A = 2$ $x = e^{-2t} (\frac{1}{2}t^2 + 2t + 1)$ Alternative method: $PI \ x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI		$t = 0, z = 1 \Longrightarrow 1 = B$	M1	Use condition	
$z = e^{-2t}(\frac{1}{2}t^2 + 2t + 1)$ A17Alternative method: PI $x = (Pt + Qt^2)e^{-2t}$ B1Correct form of PI		$\dot{z} = -2e^{-t}(\frac{1}{2}t^2 + At + B) + e^{-2t}(t + A)$	M1	Differentiate (product rule)	
Alternative method: PI $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI		$t = 0, \dot{z} = 0 \Longrightarrow 0 = -2B + A \Longrightarrow A = 2$	M1	· · · · ·	
PI $x = (Pt + Qt^2)e^{-2t}$ B1 Correct form of PI		$z = e^{-2t} \left(\frac{1}{2}t^2 + 2t + 1 \right)$	A1		7
		Alternative method:			
		$PI \ x = (Pt + Qt^2)e^{-2t}$	B1	Correct form of PI	
		P = A and $Q = 0.5$			
$z = e^{-2t} (\frac{1}{2}t^2 + At + B)$ M1A1 Complete method		$z = e^{-2t} \left(\frac{1}{2}t^2 + At + B \right)$	M1A1	Complete method	
Then as above					
(b)(i) $\alpha + 2 = 0 \Rightarrow \alpha = -2$	(b)(i)		D1	CE comment	
CF $x = Ce^{-2t}$ B1CF correctPI $x = a \sin t + b \cos t$ B1Correct form of PI					
$ \begin{array}{c} PI \ x = a \sin t + b \cos t \\ \dot{x} = a \cos t - b \sin t \end{array} $			DI		
In DE: $a\cos t - b\sin t + 2a\sin t + 2b\cos t = \sin t$ M1 Differentiate and substitute			M1	Differentiate and substitute	
a+2b=0, -b+2a=1 M1 Compare and solve		a + 2b = 0, -b + 2a = 1	M1		
$\Rightarrow a = \frac{2}{5}, b = -\frac{1}{5}$ A1		$\Rightarrow a = \frac{2}{5}, b = -\frac{1}{5}$	A1		
GS $x = \frac{1}{5}(2\sin t - \cos t) + Ce^{-2t}$ F1 Their PI + CF 6		GS $x = \frac{1}{5}(2\sin t - \cos t) + Ce^{-2t}$	F1	Their PI + CF	6
(ii) $\dot{x} = 0, t = 0 \Rightarrow x = 0$ (from DE) M1 Or differentiate	(ii)	$\dot{x} = 0, t = 0 \Longrightarrow x = 0$ (from DE)	M1	Or differentiate	
$0 = -\frac{1}{5} + C$ M1 Use condition		$0 = -\frac{1}{5} + C$	M1	Use condition	
$x = \frac{1}{5}(2\sin t - \cos t + e^{-2t})$ A1	1	$x = \frac{1}{5} (2\sin t - \cos t + e^{-2t})$	A1		3
(iii) For large $t, x \approx \frac{1}{5}(2\sin t - \cos t) = \frac{1}{5}\sqrt{5}\sin(t-\phi)$ M1 Complete method					1
So x varies between $-\frac{1}{5}\sqrt{5}$ and $\frac{1}{5}\sqrt{5}$ A1 Accept $ x \le \frac{1}{5}\sqrt{5}$ 2	(iii)	For large $t, x \approx \frac{1}{5}(2\sin t - \cos t) = \frac{1}{5}\sqrt{5}\sin(t-\phi)$	M1	Complete method	

2(1)		14		
3(i)	$\int y^{-\frac{1}{2}} \mathrm{d}y = \int -k \mathrm{d}t$	M1	Separate and integrate	
	$2y^{\frac{1}{2}} = -kt + B$	A1	LHS	
		A1	RHS	
	$t = 0, y = 1 \Longrightarrow 2 = B$	M1	Use condition	
	$t = 2, y = 0.81 \Longrightarrow 1.8 = -2k + 2$	M1	Use condition	
	$\Rightarrow k = 0.1$	A1		
	$y^{\frac{1}{2}} = 1 = 0.05t$			
	$y = (1 - 0.05t)^2$	A1		
	Valid for $1 - 0.05t \ge 0$, i.e. $t \le 20$	В1√	on arithmetical error in k	
	<i>V</i> 🔺			
	1	B1	Shape	
		B1	Intercepts	
	20 t			10
(ii)	$\int \pi y^{\frac{3}{2}} dy = \int -0.4 dt$ $\frac{2}{5} \pi y^{\frac{5}{2}} = -0.4t + C$	M1	Separate and integrate	
	$\frac{2}{5}\pi v^{\frac{5}{2}} = -0.4t + C$	A1	LHS	
	5 -	A1	RHS	
	$t = 0, y = 1 \Longrightarrow C = \frac{2}{5}\pi$	M1	Use condition	
	$y = 0.81 \Longrightarrow t = 1.287$	A1		5
(iii)	$\dot{y} = -\frac{0.4\sqrt{y}}{\pi(2y - y^2)}$	M1	Rearrange (implied by correct values)	
	t y \dot{y} $h\dot{y}$	M1	Use algorithm	
	0 1 -0.12732 -0.01273	A1	y(0.1) (awrt 0.987)	
	0.1 0.987268 -0.12653 -0.01265	M1	Use algorithm	
	0.2 0.974614	A1	<i>y</i> (0.2) (0.974 to 0.975)	5
(iv)	If $V =$ volume, $v =$ velocity, A = horizontal cross-sectional area, dV = V			
	then $\frac{\mathrm{d}V}{\mathrm{d}t} = -k_1 v$ $v = k_2 \sqrt{y}$	M1	Rate of change of volume	
	$A\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t}$	M1	Relate rates of change of y and volume	
	$\Rightarrow A \frac{\mathrm{d}y}{\mathrm{d}t} = -k_1 k_2 \sqrt{y}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = -k \sqrt{y}$	M1	Eliminate volume and/or velocity	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = -k\sqrt{y}$	E1	Complete argument	4

4(i)	$5y = 2x + 9e^{-2t} - \dot{x}$	M1	y or 5y in terms of x, \dot{x}	
	$5\dot{y} = 2\dot{x} - 18e^{-2t} - \ddot{x}$	M1	Differentiate	
	$\frac{1}{5}(2\dot{x}-18e^{-2t}-\ddot{x})$	M1	Substitute for <i>y</i>	
	$= x - \frac{4}{5}(2x + 9e^{-2t} - \dot{x}) + 3e^{-2t}$	M1	Substitute for \dot{y}	
	$\Rightarrow \ddot{x} + 2\dot{x} - 3x = 3e^{-2t}$	E1		5
(ii)	$\alpha^2 + 2\alpha - 3 = 0$	M1	Auxiliary equation	
	$\Rightarrow \alpha = 1, -3$	A1		
	$CF Ae^{t} + Be^{-3t}$	F1	CF for their roots	
	$PI x = ae^{-2t}$	B1	PI of correct form	
	$\dot{x} = -2ae^{-2t}, \ddot{x} = 4ae^{-2t}$	M1	Differentiate and substitute	
	$(4a - 4a - 3a)e^{-2t} = 3e^{-2t}$	M1	Compare coefficients and solve	
	a = -1	A1		
	GS $x = Ae^{t} + Be^{-3t} - e^{-2t}$	F1	PI + CF with two arbitrary constants	8
(iii)	$y = \frac{1}{5}(2x + 9e^{-2t} - \dot{x})$	M1		
	$\frac{1}{5}(2Ae^{t}+2Be^{-3t}-2e^{-2t}+9e^{-2t})$	M1	Differentiate and substitute	
	$-(Ae^{t} - 3Be^{-3t} + 2e^{-2t}))$	F1	Expression for \dot{x} follows their GS	
	$y = \frac{1}{5}Ae^{t} + Be^{-3t} + e^{-2t}$	A1		4
(iv)	$t = 0, x = 0 \Longrightarrow 0 = A + B - 1$	M1	Use condition	
	$t = 0, y = 2 \Longrightarrow 2 = \frac{1}{5}A + B + 1$	M1	Use condition	
	$\Rightarrow A = 0, B = 1$			
	$x = e^{-3t} - e^{-2t}$	A1		
	$y = e^{-3t} + e^{-2t}$	A1		4
(v)	As $t \to \infty, x \to 0, y \to 0$	B1		
	$y(0) < 2 \Longrightarrow A > 0$	M1	Consider coefficient(s) of e^t and mention of $y < 2$	
	$x, y \to \infty$ as $t \to \infty$	E1	Complete argument	3